বৈচিত্র্যময় প্রকৃতি নানা রকম প্যাটার্নে ভরপুর। প্রকৃতির এই বৈচিত্র্য আমরা গণনা ও সংখ্যার সাহায্যে উপলব্ধি করি। প্যাটার্ন আমাদের জীবনের সঙ্গে জুড়ে আছে নানা ভাবে। শিশুর লাল-নীল ব্লক আলাদা করা একটি প্যাটার্ন - লালগুলো এদিকে যাবে, নীলগুলো ঐদিকে যাবে। সে গণনা করতে শেখে— সংখ্যা একটি প্যাটার্ন। আবার ৫ এর গুণিতকগুলোর শেষে ০ বা ৫ থাকে, এটিও একটি প্যাটার্ন। সংখ্যা প্যাটার্ন চিনতে পারা – এটি গাণিতিক সমস্যা সমাধানে দক্ষতা অর্জনের গুরুত্বপূর্ণ অংশ। আবার আমাদের পোশাকে নানা রকম বাহারি নকশা, বিভিন্ন স্থাপনার গায়ে কারুকার্যময় নকশা ইত্যাদিতে জ্যামিতিক প্যাটার্ন দেখতে পাই। এ অধ্যায়ে সাংখ্যিক ও জ্যামিতিক প্যাটার্ন বিষয়ে আলোচনা করা হবে।
অধ্যায় শেষে শিক্ষার্থীরা-
➤ প্যাটার্ন কী তা ব্যাখ্যা করতে পারবে।
➤ রৈখিক প্যাটার্ন লিখতে ও বর্ণনা করতে পারবে।
➤ বিভিন্ন ধরনের জ্যামিতিক প্যাটার্ন লিখতে ও বর্ণনা করতে পারবে।
➤ আরোপিত শর্তানুযায়ী সহজ রৈখিক প্যাটার্ন লিখতে ও বর্ণনা করতে পারবে।
➤ রৈখিক প্যাটার্নকে চলকের মাধ্যমে বীজগণিতীয় রাশিমালায় প্রকাশ করতে পার।
➤ রৈখিক প্যাটার্নের নির্দিষ্টতম সংখ্যা বের করতে পারবে।
কিছু স্বাভাবিক সংখ্যা রয়েছে যেগুলোকে দুইটি স্বাভাবিক সংখ্যার বর্গের সমষ্টিরূপে প্রকাশ করা যায়।
যেমন,
২
এভাবে ১ থেকে ১০০ এর মধ্যে ৩৫ টি সংখ্যাকে দুইটি স্বাভাবিক সংখ্যার বর্গের যোগফল হিসেবে প্রকাশ করা যায়। আবার কিছু স্বাভাবিক সংখ্যাকে দুই বা ততোধিক উপায়ে দুইটি স্বাভাবিক সংখ্যার বর্গের সমষ্টিরূপে প্রকাশ করা যায় । যেমন,
কাজ ১। ১৩০, ১৭০, ১৮৫ কে দুইভাবে দুইটি স্বাভাবিক সংখ্যার বর্গের সমষ্টিরূপে প্রকাশ কর। ২। ৩২৫ কে তিনটি ভিন্ন উপায়ে দুইটি স্বাভাবিক সংখ্যার বর্গের সমষ্টিরূপে প্রকাশ কর। |
একটি বর্গক্ষেত্রকে দৈর্ঘ্য ও প্রস্থ বরাবর তিন ভাগে ভাগ করে নয়টি ছোট বর্গক্ষেত্র করা হলো। প্রতিটি ক্ষুদ্র বর্গক্ষেত্রে ১ থেকে ৯ পর্যন্ত ক্রমিক স্বাভাবিক সংখ্যাগুলো এমনভাবে সাজাতে হবে যাতে পাশাপাশি, উপর-নিচ, কোনাকুনি যোগ করলে যোগফল একই হয়। এ ক্ষেত্রে ৩ ক্রমের ম্যাজিক সংখ্যা হবে ১৫। সংখ্যাগুলো সাজানোর বিভিন্ন কৌশলের একটি কৌশল হলো কেন্দ্রের ছোট বর্গক্ষেত্রে ৫ সংখ্যা বসিয়ে কর্ণের বরাবর বর্গক্ষেত্রে জোড় সংখ্যাগুলো লিখতে হবে যেন কর্ণ দুইটি বরাবর যোগফল ১৫ হয়। কর্ণের সংখ্যাগুলো বাদ দিয়ে বাকি বিজোড় সংখ্যাগুলো এমনভাবে নির্বাচন করতে হবে যেন পাশাপাশি, উপর-নিচ যোগফল ১৫ পাওয়া যায়। পাশাপাশি, উপর-নিচ, কোনাকুনি যোগ করে দেখা যায় ১৫ হচ্ছে।
একটি বর্গক্ষেত্রকে দৈর্ঘ্য ও প্রস্থ বরাবর চার ভাগে ভাগ করে ষোলটি ছোট বর্গক্ষেত্র করা হলো । প্রতিটি ক্ষুদ্র বর্গক্ষেত্রে ১ থেকে ১৬ পর্যন্ত ক্রমিক স্বাভাবিক সংখ্যাগুলো এমনভাবে সাজাতে হবে যাতে পাশাপাশি, উপর- নিচ, কোনাকুনি যোগ করলে যোগফল একই হয় । এ ক্ষেত্রে যোগফল হবে ৩৪ এবং ৩৪ হলো ৪ ক্রমের ম্যাজিক সংখ্যা। সংখ্যাগুলো সাজানোর বিভিন্ন কৌশল রয়েছে। একটি কৌশল হলো সংখ্যাগুলো যেকোনো কোনা থেকে আরম্ভ করে ক্রমান্বয়ে পাশাপাশি, উপর-নিচ লিখতে হবে। কর্ণের সংখ্যাগুলো বাদ দিয়ে বাকি সংখ্যাগুলো নির্বাচন করতে হবে। এবার কর্ণের সংখ্যাগুলো বিপরীত কোনা থেকে লিখি। পাশাপাশি, উপর-নিচ, কোনাকুনি যোগ করে দেখা যায়, যোগফল ৩৪ হচ্ছে।
কাজ : ১। ভিন্ন কৌশলে ৪ ক্রমের ম্যাজিক বর্গ গঠন কর। ২। দলগতভাবে ৫ ক্রমের ম্যাজিক বর্গ গঠনের চেষ্টা কর। |
নিচের প্রথম চিত্রের টাইলগুলো লক্ষ করি। এগুলো একটি প্যাটার্নে সাজানো হয়েছে। এখানে প্রতিটি আড়াআড়ি টাইলস্ এর পাশের টাইলটি লম্বালম্বিভাবে সাজানো। সাজানোর এই নিয়মটি একটি প্যাটার্ন সৃষ্টি করেছে।
দ্বিতীয় চিত্রে কতগুলো সংখ্যা ত্রিভুজাকারে সাজানো হয়েছে। সংখ্যাগুলো একটি বিশেষ নিয়ম মেনে নির্বাচন করা হয়েছে। নিয়মটি হলো: প্রতি লাইনের শুরুতে ও শেষে ১ থাকবে এবং অন্য সংখ্যাগুলো উপরের সারির দুইটি পাশাপাশি সংখ্যার যোগফলের সমান। যোগফল সাজানোর এই নিয়ম অন্য একটি প্যাটার্ন সৃষ্টি করেছে।
আবার, ১, ৪, ৭, ১০, ১৩, ... সংখ্যাগুলোতে একটি প্যাটার্ন বিদ্যমান। সংখ্যাগুলো ভালোভাবে লক্ষ করে দেখলে একটি নিয়ম খুঁজে পাওয়া যাবে। নিয়মটি হলো, ১ থেকে শুরু করে প্রতিবার ৩ যোগ করতে হবে। অন্য একটি উদাহরণ : ২, ৪, ৮, ১৬, ৩২, ... প্রতিবার দ্বিগুণ হচ্ছে।
আমরা জানি যে, ১-এর চেয়ে বড় যে সব সংখ্যার ১ ও সংখ্যাটি ছাড়া অন্য কোনো গুণনীয়ক নেই, সেগুলো মৌলিক সংখ্যা। ইরাটোস্থিনিস (Eratosthenes) ছাঁকনির সাহায্যে সহজেই মৌলিক সংখ্যা নির্ণয় করা যায়। ১ থেকে ১০০ পর্যন্ত স্বাভাবিক সংখ্যাগুলো একটি চার্টে লিখি। এবার সবচেয়ে ছোট মৌলিক সংখ্যা ২ চিহ্নিত করি এবং এর গুণিতকগুলো কেটে দেই। এরপর ক্রমান্বয়ে ৩, ৫ এবং ৭ ইত্যাদি মৌলিক সংখ্যার গুণিতকগুলো কেটে দিই । তালিকায় যে সংখ্যাগুলো টিকে রইল সেগুলো মৌলিক সংখ্যা।
উদাহরণ ১। সংখ্যাগুলোর পরবর্তী দুইটি সংখ্যা নির্ণয় কর : ৩, ১০, ১৭, ২৪, ৩১, ....
সমাধান : প্রদত্ত সংখ্যাগুলো
পাশাপাশি দুইটি সংখ্যার পার্থক্য
লক্ষ করি, প্রতিবার পার্থক্য ৭। অতএব, পরবর্তী দুইটি সংখ্যা হবে যথাক্রমে ৩১+৭ = ৩৮ ও ৩৮+৭ =৪৫।
উদাহরণ ২। সংখ্যাগুলোর পরবর্তী সংখ্যাটি নির্ণয় কর: ১, ৪, ৯, ১৬, ২৫, ...
সমাধান : প্রদত্ত সংখ্যাগুলো
পাশাপাশি দুইটি সংখ্যার পার্থক্য
লক্ষ করি, প্রতিবার পার্থক্য ২ করে বাড়ছে । অতএব, পরবর্তী সংখ্যা হবে ২৫ + (৯ + ২) = ২৫ + ১১ = ৩৬।
উদাহরণ ৩। সংখ্যাগুলোর পরবর্তী সংখ্যাটি নির্ণয় কর : ১, ৫, ৬, ১১, ১৭, ২৮, ....
সমাধান : প্রদত্ত সংখ্যাগুলো
পাশাপাশি দুইটি সংখ্যার যোগফল
প্রদত্ত সংখ্যাগুলো একটি প্যাটার্নে লেখা হয়েছে । পরপর দুইটি সংখ্যার যোগফল পরবর্তী সংখ্যাটির সমান । অতএব, পরবর্তী সংখ্যাটি হবে ১৭ + ২৮ = ৪৫।
কাজ : ১। ০, ১, ১, ২, ৩, ৫, ৮, ১৩, ২১, ৩৪, ….. সংখ্যাগুলোকে ফিবোনাক্কি সংখ্যা বলা হয়। সংখ্যাগুলোতে কোনো প্যাটার্ন দেখতে পাও কি ? লক্ষ কর : ২ পাওয়া যায় এর পূর্ববর্তী দুইটি সংখ্যা যোগ করে (১+১) ৩ '' '' '' '' দুইটি '' '' '' '' (১+২) ২১ '' '' '' '' দুইটি '' '' '' '' (৮+১৩) পরবর্তী দশটি ফিবোনাক্কি সংখ্যা বের কর। |
স্বাভাবিক ক্রমিক সংখ্যার যোগফল বের করার একটি চমৎকার সূত্র রয়েছে। আমরা সহজেই সূত্রটি বের করতে পারি।
মনে করি, ১ থেকে ১০ পর্যন্ত ক্রমিক স্বাভাবিক সংখ্যাগুলোর যোগফল ক।
অর্থাৎ,ক = ১ + ২ + ৩ + 4 + 5 + 6 + ৭ + ৮ + ৯ + ১০
লক্ষ করি, প্রথম ও শেষ পদের যোগফল ১ + ১০ = ১১, দ্বিতীয় ও শেষ পদের আগের পদের যোগফলও ২ + ৯ = ১১ ইত্যাদি। একই যোগফলের প্যাটার্ন অনুসরণ করে ৫ জোড়া সংখ্যা পাওয়া গেল। সুতরাং যোগফল ১১ × ৫ = ৫৫। এ থেকে স্বাভাবিক ক্রমিক সংখ্যার যোগফল বের করার একটি কৌশল পাওয়া গেল।
কৌশলটি হলো :
প্রদত্ত যোগফলের সাথে সংখ্যাগুলো বিপরীত ক্রমে লিখে যোগ করে পাই
কাজ : ১ থেকে ১৫ পর্যন্ত ক্রমিক স্বাভাবিক সংখ্যাগুলোর যোগফল বের করে সূত্র প্রতিষ্ঠা কর। |
প্রথম দশটি বিজোড় সংখ্যার যোগফল কত? ক্যালকুলেটরের সাহায্যে সহজেই যোগফল পাই, ১০০। ১+৩+৫+৭+৯+১১ + ১৩ + ১৫ + ১৭ + ১৯ = 100
এভাবে প্রথম পঞ্চাশটি বিজোড় সংখ্যার যোগফল বের করা সহজ হবে না। বরং এ ধরনের যোগফল নির্ণয়ের জন্য কার্যকর গাণিতিক সূত্র তৈরি করি । ১ থেকে ১৯ পর্যন্ত বিজোড় সংখ্যাগুলো লক্ষ করলে দেখা যায়, ১ + ১৯ = ২০, ৩ + ১৭ = ২০, ৫ + ১৫ = ২০ ইত্যাদি। এরকম ৫ জোড়া সংখ্যা পাওয়া যায় যাদের প্রত্যেক জোড়ার যোগফল ২০। সুতরাং, সংখ্যা গুলোর যোগফল ৫ × ২০ = ১০০
আমরা লক্ষ করি,
১ + ৩ = ৪, একটি পূর্ণবর্গ সংখ্যা
১ + ৩ + ৫ = ৯, একটি পূর্ণবর্গ সংখ্যা
১+৩+৫+৭ = ১৬, একটি পূর্ণবর্গ সংখ্যা, ইত্যাদি।
প্রতিবার যোগফল একটি পূর্ণবর্গ সংখ্যা পাচ্ছি। বিষয়টি জ্যামিতিক প্যাটার্ন হিসেবে সহজেই ব্যাখ্যা করা যায়। ক্ষুদ্রাকৃতির বর্গের সাহায্যে এই যোগফলের প্যাটার্ন লক্ষ করি।
দেখা যাচ্ছে যে প্রথম দুইটি ক্রমিক বিজোড় সংখ্যার যোগের বেলায় প্রত্যেক পাশে ২টি করে ছোট বর্গ বসানো হয়েছে। আবার, প্রথম তিনটি ক্রমিক বিজোড় সংখ্যা যোগের বেলায় প্রত্যেক পাশে ৩টি ছোট বর্গ বসানো হয়েছে। সুতরাং, ১০টি ক্রমিক বিজোড় সংখ্যা যোগ করলে চিত্রের প্রত্যেক পাশে ১০টি ছোট বর্গ থাকবে। অর্থাৎ, ১০ x ১০ = ১০২ বা ১০০টি বর্গের প্রয়োজন হবে। সাধারণভাবে বলা যায় যে, 'ক' সংখ্যক ক্রমিক স্বাভাবিক বিজোড় সংখ্যার যোগফল কই।
কাজ : ১। যোগফল বের কর: ১+৪+৭+১০+ ১৩ + ১৬ + ১৯ + ২২ + ২৫ + ২৮ + ৩১ |
১। দুই অঙ্কের যেকোনো সংখ্যা নাও। সংখ্যার অঙ্ক দুইটির স্থান বদল করে প্রাপ্ত নতুন সংখ্যাটির সাথে আগের সংখ্যাটি যোগ কর। যোগফল কে ১১ দ্বারা ভাগ কর । ভাগশেষ হবে শূন্য।
২। দুই অঙ্কের যেকোনো সংখ্যার অঙ্ক দুইটির স্থান পরিবর্তন কর। বড় সংখ্যাটি থেকে ছোট সংখ্যাটি বিয়োগ করে বিয়োগফলকে ৯ দ্বারা ভাগ দাও । ভাগশেষ হবে শূন্য।
৩ । তিন অঙ্কের যেকোনো সংখ্যা নাও । সংখ্যার অঙ্কগুলোকে বিপরীত ক্রমে লিখ । এবার বড় সংখ্যাটি থেকে ছোট সংখ্যাটি বিয়োগ কর। বিয়োগফল ৯৯ দ্বারা ভাগ কর । ভাগশেষ হবে শূন্য।
চিত্রের বর্ণগুলো সমান দৈর্ঘ্যের রেখাংশের দ্বারা তৈরি করা হয়। এ রকম কয়েকটি অঙ্কের চিত্র লক্ষ করি :
চিত্রগুলো তৈরি করতে কতগুলো রেখাংশ প্রয়োজন এর প্যাটার্ন লক্ষ করি। 'ক' সংখ্যক অঙ্ক তৈরির জন্য রেখাংশের সংখ্যা প্রতি প্যাটার্নের শেষে বীজগণিতীয় রাশির সাহায্যে দেখানো হয়েছে।
ক্রমিক নং | রাশি | পদ | ||||||||
১ম | ২য় | ৩য় | ৪র্থ | ৫ম | ১০ম | ১০০তম | ||||
১ | ২ক + ১ | ৩ | ৫ | ৭ | ৯ | ১১ | ২১ | ২০১ | ||
২ | ৩ক + ১ | ৪ | ৭ | ১০ | ১৩ | ১৬ | ৩১ | ৩০১ | ||
৩ | ০ | ৩ | ৮ | ১৫ | ২৪ | ৯৯ | ৯৯৯৯ | |||
৪ | ৪ক + ক | ৭ | ১১ | ১৫ | ১৯ | ২৩ | ৪৩ | ৪০৩ |
উদাহরণ ৪।
উপরের জ্যামিতিক চিত্রগুলো একটি প্যাটার্ন তৈরি করছে যা সমান দৈর্ঘ্যের কাঠি দিয়ে তৈরি।
ক. প্যাটার্নে চতুর্থ চিত্রটি তৈরি করে কাঠির সংখ্যা নির্ণয় কর।
খ. প্যাটার্নটি কোন বীজগণিতীয় রাশিকে সমর্থন করে তা যুক্তিসহ উপস্থাপন কর। গ. প্যাটার্নটির প্রথম পঞ্চাশটি চিত্র তৈরি করতে মোট কতটি কাঠি দরকার হবে তা নির্ণয় কর।
সমাধান :
(ক) উদ্দীপকের আলোকে চতুর্থ প্যাটার্নটি নিম্নরূপ
প্যাটার্নটিতে সমান দৈর্ঘ্যের কাঠির সংখ্যা ২১
(খ) ১ম চিত্রে কাঠির সংখ্যা = ৬
= ৫ + ১
= ৫ X 1 + 1
২য় চিত্রে কাঠির সংখ্যা = ১১
= ১০ + ১
= ৫ X ২ + ১
৩য় চিত্রে কাঠির সংখ্যা = ১৬
= ১৫ + ১
= ৫ X ৩ + ১
৪র্থ চিত্রে কাঠির সংখ্যা = ২১
= ২০+১
= ৫ X ৪ + ১
একই ভাবে ক-তম চিত্রে, কাঠির সংখ্যা = ৫ X ক + ১
= ৫ক + ১
.:. প্যাটার্নগুলো (৫ক+১) বীজগাণিতিক রাশি দ্বারা প্রকাশ করা যায়।
(গ) ‘খ’ অংশ থেকে পাই
প্যাটার্নটির বীজগাণিতিক রাশি ৫ক+১
.. ৫০ তম প্যাটার্নে প্রয়োজনীয় কাঠির সংখ্যা = ৫ X ৫০ + ১
= ২৫০ + ১
= ২৫১
এখন, প্যাটার্নগুলোর কাঠির সংখ্যাগুলোর সমষ্টি = ৬ + ১১ + ১৬ + ২১ +...+ ২৫১
এখানে, ১ম পদ = ৬
শেষ পদ = ২৫১
পদ সংখ্যা = ৫০
= ২৭৫ X ২৫
= ৬৪২৫
.:. ৫০টি প্যাটার্ন তৈরিতে প্রয়োজনীয় কাঠির সংখ্যা ৬৪২৫
i ও ii
i ও iii
ii ও iii
i, ii ও iii
৫২ + ২৫
৫২৭ + ৭২৫
৪১২ + ২৩৪
৭৫ - ৫৭
৯৯ক + ১
৯৯ক – ১
Read more